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A series of two- and three-dimensional numerical simulations of transient flow in a 
side-heated cavity has been conducted. The motivation for the work has been to 
resolve discrepancies between a flow description based on scaling arguments and one 
based on laboratory experiments, and to provide a more detailed description of the 
approach to steady state. All simulations were for a Rayleigh number of 2 x lo9, and 
a water-filled cavity of aspect ratio 1. The simulations (beginning with an isothermal 
fluid at rest) generally agree with the results of the scaling arguments. In  addition, 
the experimental observations are entirely accounted for by the position of the 
measurement instruments and the presence of an extremely weak, stabilizing 
temperature gradient in the vertical. 

1. Introduction 
Transient behaviour in fluid flow is of fundamental interest. Its investigation, 

however, presents problems particularly where the approach to steady state involves 
a multiplicity of time and length scales. For laboratory experiments these problems 
relate primarily to physical limitations, including design of an experiment that can 
satisfactorily approach the desired boundary and initial conditions, and choice of 
what and where to measure in an evolving flow. The problems are so severe that only 
relatively few transient flow experiments have been conducted. From the standpoint 
of numerical simulation the difficulties associated with measurements are trivial. On 
the other hand, producing a stable, accurate and efficient code to encompass the 
appropriate time and lengthscales is difficult. Therefore the approach taken in this 
paper is to use a numerical code, but one for which past experience in simulating 
unsteady flows provides a basis for confidence in its accuracy. 

The transient flow considered is that arising in a square cavity across which a 
temperature difference is imposed. The three dimensionless parameters that describe 
such a flow are the Rayleigh number, the Prandtl number, and the aspect ratio of the 
cavity (Batchelor 1954). Patterson & Imberger (1980) used scaling arguments to 
derive a classification scheme based on the relative values of groupings of these 
dimensionless parameters. Using this scheme, features of the transient behaviour 
could be described and applicable time and lengthscales calculated. For lower 
Rayleigh number flows, numerical simulations supported their classification. In their 
regime V, the classification scheme suggested the existence of internal wave motions. 
Physical experiments by Yewell, Poulikakos & Bejan (1982) were directed towards 
this regime and confirmed some aspects of the flow; however, the expected oscillating 
approach to steady state a t  higher Rayleigh numbers was not observed. It was 
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subsequently shown by Patterson (1984) that these experiments were in fact 
conducted in a non-oscillatory regime and were, accordingly, consistent with the 
classification scheme. 

More recently, Ivey (1984) conducted an experiment in a range for which the 
classification did indeed suggest oscillations would be present. Three of his 
observations are particularly noteworthy and provided the impetus for the present 
work. First, he did not observe the seiching-type motion suggested by Patterson & 
Imberger, although oscillations were present in part of the cavity. Second, there was 
a large core motion that rotated counter to the main flow in the boundaries- 
essentially in a direction that was down the hot wall and up the cold wall. This was 
evident only in the early stages of the flow and was not present as the flow advanced 
towards steady state. Third, there were ‘hydraulic jump-like ’ features present on the 
horizontal boundaries near the top of the hot wall and the bottom of the cold 
wall. 

The present work describes a series of numerical simulations, based on one of the 
flow cases investigate by Ivey (1984). The adopted reference is the ‘ideal ’ of a two- 
dimensional square cavity initially containing isothermal water a t  rest. At time zero, 
one vertical sidewall is heated and the opposite one cooled by equivalent temperature 
differences, and thereafter this difference is maintained. To test the sensitivity of the 
flow we have introduced a number of variations from this ideal. The changes are of 
a type and magnitude that could be present in a laboratory experiment, and include 
gradually heated sidewalls, non-insulated upper and lower boundaries, allowance for 
three-dimensional motions, and an initial vertical temperature gradient in the 
cavity. The first three variations represent in part the conditions of the experiments 
described by Ivey (1984). The existence of a vertical temperature gradient was not 
ascertained in those experiments, and so its existence is purely speculative. 

2. Simulation codes 
The numerical results were obtained using the REMIXCS code (Freitas et al. 1985) 

and a major modification to it, the SEAFLOSl code (Perng & Street 1988). Both solve 
the Navier-Stokes and energy equations in primitive variables on a non-uniform, 
two- or three-dimensional mesh. The difference equations are derived by volume 
integration of the partial differential equations on a control volume surrounding each 
node of the space-staggered computational mesh. A quadratic upstream interpolation 
technique (QUICK) is used in the finite-difference formulation of the convective terms 
to produce a numerical scheme that is globally second-order accurate in space 
(Leonard 1979). A backward-Euler (implicit, first-order-accurate) time-differencing 
scheme is used to step the calculation forward in time. The Boussinesq assumption 
is only partially invoked (i.e. the temporal variation of density is assumed negligible), 
and fluid properties (density, viscosity, specific heat and thermal conductivity) are 
dynamically computed as functions of temperature. While the former code is based 
on the long established SIMPLE algorithm (Patankar 1980), sEAFLosi  incorporates a 
number of significant changes. An exact pressure equation is now solved (in a method 
similar to the PRIME algorithm of Van Doormaal & Raithby 1984). By using the 
Incomplete Cholesky Decomposition-Conjugate Gradient method for solving this 
equation, the speed was enhanced by a factor of 5. A revised QUICK formulation for 
non-uniform grids is included, as are refinements to the treatment of the boundary 
conditions. 

Both codes have been used successfully to simulate lid-driven cavity flows. Freitas 
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et al. (1985) used REMIXCS a t  a Reynolds number of 3200 and reproduced 
experimentally observed Taylor-Gortler-like vortices and other three-dimensional 
features heretofore not simulated. Even better agreement for the same flow has since 
been attained by using the SEAFLosi code (Perng & Street 1988; Prasad, Perng & 
Koseff, 1988). 

Several versions of SEAFLOSi and REMIXCS have been used to examine the present 
problem. Although slight differences exist between each result (many used different 
mesh spacings) the basic flow structure produced was unchanged. The results to be 
presented are all from the SEAFLOSi code. 

3. Scaling of the flow and considerations of vorticity 
The scaling arguments of Patterson & Imberger (1980) provide a theoretical 

description of the flow structure that, for the case to be presented, has yet to be fully 
tested. In  this case, the nominal parameter values are Rayleigh number, Ra = 2 x lo9, 
Prandtl number, IT = 7.1 and aspect ratio, A = 1. This corresponds to an ambient 
temperature of 20 "C and sidewall temperatures of 15 and 25 "C in a cavity of height 
0.24 m, as shown in figure 1 fa). In  the context of Patterson & Imberger we operate in 

By their arguments, a double-layer structure starts to form on the vertical walls 
immediately after the temperature difference is imposed. The timescale for the 
growth of the inner thermal boundary layer is 

the range of regime V (A-6 < IT and do < Ra < U ~ ~ A - ' ~  ). 

a t  which time the velocity and lengthscales are 

and 
h 

Raf ' 
6, - - (3) 

Here h is the cavity height, K the thermal diffusivity, the Rayleigh number is defined 
by Ra = 2gabTh3/v~ ,  the Prandtl number by IT = v / K ,  where v is the kinematic 
viscosity, 2AT is the total temperature difference across the cavity, a is the 
coefficient of thermal expansion and g is the gravitational acceleration. For a square 
cavity, the aspect ratio A = h/l  = h/h  = 1. For Prandtl number, IT > 1 ,  the 
lengthscale for the outer viscous layer is given by 

6, - IT&Y,. (4) 

As the flow along the vertical walls approaches the corner, it is forced to  discharge 
into the core of the cavity. For times greater than 7 the unheated fluid from the 
viscous layer discharges as a potential flow, while the heated (cooled) fluid intrudes 
as a layer across the top (bottom) of the cavity. For sufficiently small times, the 
intruding layer is described by an inertia-buoyancy balance, suggesting a layer 
thickness of order 

5 FLM 200 
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Point x l h  y l h  
1 0.79 0.967 
2 0.79 0.937 
3 0.21 0.967 
4 0.21 0.5 

Y l h  

t 

FIGURE 1.  General arrangement of simulated cavity. Dimensions are normalized by cavity 
dimensions (0.24 m in x- and y-directions, 0.2 m in z-direction). (a) Two-dimensional cavity. 
Points numbered 1-3 are locations of temperature probes in h e y  (1984) experiments. (b)  Three- 
dimensional cavity. 

The viscous terms become important at time of order 

after which a viscous-buoyancy balance suggests a growing intrusion thickness of 
order 

&hit& 
A ,  N - Ra& . 

The velocity of the intrusion would be of order 

(7)  

q-- v* 8, 
A ’  
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where A could be either of A ,  or A, .  For the parameter range inherent in regime V 
(Patterson & Imberger 1980), the scaling suggests that the transition from a 
buoyancy-inertia intrusion to a viscous-buoyancy intrusion occurs after the vertical 
boundary layer is established, but before an inertial intrusion could reach the 
opposite wall. 

As horizontal intrusions continue to convect heat across the cavity there is a 
gradual filling of the core with a stable vertical temperature gradient. Filling occurs 
in the time taken for all the fluid in the cavity to pass through the thermal boundary 
layer, which is of order 

(9) 

(Of course, here I = h since A = 1.) At the same time, tilting of the isotherms owing 
to a ‘piling up’ of the intruding flow at the opposite side of the cavity may induce 
cavity-scale internal waves (seiches) of frequency 

where N is the Brunt-Vaisala frequency given by 

(lfKR&)f 
N - -  

h2 ’ 

The timescale for the decay of the wave motion is given by 

and hence the time to steady state will be the larger of Tf or Td. 
The suggestion of a counter-rotating core and a jump-like structure and its 

associated small-scale circulating regions by the Ivey experiments indicate that the 
flow development may, at least in part, be best described in terms of the production 
and transport of vorticity. The scaling can readily be extended to encompass such an 
approach. 

Consider, first, the vorticity generation mechanisms. The transport of vorticity is 
described in two dimensions by 

am uaw vaw aT -+-+- = vVw+ga- ,  
at ax ay ax 

where the vorticity o = av/ax-au/ay, and u and v are the velocity components in the 
x- and y-coordinate directions respectively. 

The conduction of heat through either vertical boundary establishes a positive 
horizontal temperature gradient (with the cold wall to the left, figure l a )  which 
provides the baroclinic generation of positive (i.e. counterclockwise rotation) 
vorticity at a rate of the order of gaaT/ax. At the same time, the vertical-momentum 
equation is 

-+-+-= - 
av uav vav 
at ax ay 

5-2 
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At the cold boundary, u = v = 0 ,  and T = %-AT, and the momentum equation 
gives (near the wall) 

Over most of the vertical boundary the tangential pressure gradient i3p/ay will be 
very slight. If it is neglected the above equation simply reduces to  representing a flux 
of negative vorticity into the fluid from the boundary due to the relative acceleration 
between the fluid and the wall caused by the temperature difference. This produces 
the zero boundary velocity required and counters the positive vorticity baroclinically 
produced in the near boundary region. The vorticity will then increase from some 
negative value on the boundary to zero a t  the point of maximum velocity, and then 
further increase to a positive maximum before falling away to zero. The zero crossing 
must be contained in the thermal boundary layer aT, and the vorticity in the region 
beyond the vorticity maximum is the result of the horizontal diffusion of vorticity 
by viscosity. 

An estimate of the magnitude of the boundary value of vorticity may be obtained 
by treating the thermal-layer thickness as an estimate for the location of the zero 
crossing. lnitially the thermal-layer thickness grows as (Kt)i, thus 

Initially the vorticity in the interior of the positive maximum peak has been diffused 
there by viscosity over the evolving viscous boundary layer S,, which scales as 
&ST. An estimate of the peak value may be made, since in this region w - &/ax, 
giving 

Similar arguments to those in Patterson & Imberger follow for increasing time. 
Advection becomes important a t  times greater than 7 ,  a t  which time 

Consider now the effect of the horizontal boundary. As the vertical boundary flow 
approaches the corner, pressure should become important and the flow should 
experience a deceleration. This will produce vorticity of positive sign at the boundary 
(Morton 1984), which will act to  annihilate the negative vorticity of the flow in the 
thermal boundary layer. Therefore, we would expect that vorticity would be close 
to zero at the very bottom (top) of the cold (hot) wall. Eventually the flow is ejected 
near horizontally by the pressure gradient. The resulting acceleration now generates 
negative vorticity a t  the horizontal wall, over a distance approximately equal to  that 
over which vorticity had previously been annihilated. 

Positive-vorticity fluid from the viscous boundary layer on the other hand is less 
influenced by buoyancy. Thus this fluid will be ejected (approximately) radially from 
the corner. As the pressure gradient driving the flow will be smaller than that for the 
thermal layer, the ejection rate should be much smaller. The effect is that the 
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positive vorticity collects in the region interior to the thermal boundary layer and 
the horizontal intrusion, and forms a counterclockwise-rotating region here. A 
similar mechanism was proposed by Tabaczynski, Hoult & Keck (1970) for flow in a 
moving corner. 

A final source of vorticity production that needs to be considered is the baroclinic 
production associated with the passage of the initial horizontal temperature 
intrusions across the cavity. Previously Patterson & Imberger (1980) had only 
postulated cavity-scale baroclinic vorticity when the intrusion had completely 
crossed the cavity and was tending to ‘pile up’ a t  the opposite side. What is being 
suggested now is that vorticity will be produced a t  the head of the intrusion, where 
temperature gradients are steepest. As the gradients are positive, the vorticity 
produced would also be positive ; however, owing to the smaller temperature 
gradient, it would be considerably smaller than that adjacent to the hot and cold 
walls. 

4. Numerical resolution 
The choice of an appropriate mesh spacing and simulation timestep was in the first 

instance guided by expectations of the flow based on the scaling results described 
previously. A satisfactory choice would be one that could adequately resolve the 
smallest time and lengthscales (see table 1) .  Implicit in this approach is the 
assumption that the flow remains laminar. There are good reasons to expect this to 
be the case. Turner (1973) gives the critical Rayleigh number for the transition to 
turbulence for the case of convection near a solid, vertical boundary as Ra - 7 x lo9. 
This is associated with a boundary-layer Reynolds number of a ‘few hundred’. 
Based on the scaled values, our Reynolds number is approximately 80. There is also 
direct evidence that cavity flows with Ra - O(iOD) are not turbulent. The most apt 
is that from Ivey (1984). The particle track photographs from various stages of the 
flow all show smooth pathlines, strongly suggestive of laminar flow. Similarly, 
temperature traces using fast-response thermistors show fluctuations with periods 
greater than 5 s, seemingly too long for turbulence. Other direct evidence comes from 
the experiments of Elder (1965). Although those results are for tall narrow cavities, 
turbulence was seen to commence at Ra greater than O(lOD). 

An alternative approach is to use as a guide experimentally observed lengths and 
times associated with the formation of instabilities prior to the onset of turbulence 
a t  higher Rayleigh numbers. When convectively driven flows adjacent to vertical 
boundaries become unstable, the instability takes the form of a travelling wave 
disturbance propagating along the boundary layer and a t  about the same velocity 
(Gill & Davey 1969). As these instabilities would start to form some distance up the 
vertical wall where the mesh spacing in the y-direction is relatively large, their scales 
provide a rational basis for establishing the mesh size to use away from the walls. 
This approach has the added advantage of being an indirect test of whether 
turbulence will occur in our problem. If the resolution is sufficient to detect the initial 
instabilities, and if these are indeed observed, i t  could be inferred that the flow will 
become a t  least partially turbulent. Under these circumstances the model would not 
be expected to perform well. Elder (1965) has observed such waves, and scaling 
from his photographs yields a reasonable estimate for the disturbance wave- 
length as 1.5 x lo-* m. Assuming that the wave is travelling a t  the scale velocity of 
2.6 x 

Tests of mesh spacing were conducted for the two-dimensional ‘ ideal ’ case only and 
ms-l, its period would be 0.6 s. 
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Value 

1 . 1  x m 
3.0 x m 
9.1 s 
2.6 x m 8-l 
3.5 x m 

Varies with time 
1.3 x 10's 
6.3 x lo-* m 8-l 

1.7 x lo-' 8-l 

1.9xloss 
- 1.4 x 10' 8-' 

5.2 8-1 

5.7 x 1 0 4  s 

TABLE 1. 

Eqn Description 

(3) Thermal boundary layer thickness5 
(4) Viscous boundary layer thickness 
( 1 )  
(2) 

Growth time for thermal boundary layer 
Velocity in thermal boundary layer 
Inertia buoyancy layer thickness 
Viscous buoyancy layer thickness 
Time for viscosity to be important 
Inertia buoyancy layer velocity 
Internal wave frequency 
Decay time of internal waves 
Cavity filling time 
Negative vorticity generated at sidewall 
Positive vorticity generated by sidewall 
heating 

Scale values for reference case 

used non-uniform meshes of 30 x 30, 40 x 40, 50 x 50, 62 x 62, 74 x 74 and 90 x 90. 
The number of internal mesh points in each direction is two less than the total number. 
All mesh spacings used had at least three points within the thermal-boundary-layer 
scale of the wall (1.1 x m) in each direction. Away from the walls the mesh was 
expanded smoothly, the total points being determined by the degree of spread. 

With the exception of the 30 x 30 mesh all produced very similar results. The 
30 x 30 mesh failed to  adequately resolve the velocity profile along the horizontal 
boundaries, resulting in the production of 'false vorticity '. Ironically this 
qualitatively reproduced one of the notable features of Ivey's experiment (the core 
eddy) ; however, the predicted velocities in the core were an order-of-magnitude 
greater than those observed in the experiment. 

The 90 x 90 mesh had a maximum spacing,of 4.8 x lop3 m and a minimum spacing 
of 9.6 x lop5 m, yielding 7 points within the thermal and 11 points within the viscous 
boundary-layer scales. The maximum spacing was set according to the instability 
considerations just noted above. A simulation using this mesh with a 0.25 s timestep 
was run for 186 s. Figure 2 shows isotherms at the base of the cold wall at t = 80 s. 
There is, as expected, no indication of wave-like instabilities in the vertical boundary 
layer, confirming the hypothesis that the flow is not turbulent. The slight 
discontinuities in the isotherms adjacent to the vertical wall are the result of plotter 
discretization. The vortex region with the distinct temperature inversion near the 
bottom boundary shows up on all the other simulation meshes used. Results at later 
times show only very slight differences from the simulations at 50 x 50, 62 x 62 and 
74 x 74, which employed 1 s timesteps. 

The 50x50  mesh had minimum and maximum normalized mesh spacings of 
5 x and 1.2 x loT2 m) respectively, and half of the mesh 
points were within 10% of the boundary (see the inset to figure 3). Whereas, a 
timestep of 0.25 s was used with the 90 x 90 mesh, three timesteps were tried with the 
50 x 50 mesh: 0.5, 1 and 2 s. The 1 s (actually 1.007 s) timestep gave adequate 
resolution of the smallest timescales, and restricted the numerical diffusion caused by 
the backward-Euler timestepping. This scheme has a truncation error with a 
'diffusion' coefficient equal to the product of one-half the timestep and the square 
of the appropriate velocity components. With a timestep of 0 ( 1  s), the second 
derivative in the diffusion term is small where the coefficient is large, so that the 

and 5 x lop2 (1.2 x 



Transient Jlow in a side-heated cavity at high Rayleigh number 129 

0 0.2 0.4 

xlh  

FIGURE 2. Temperature contours at base of cold wall at t = 80 s for 90 x 90 simulation. 
Values shown are in "C. Contour increments are 0.4 "C. 

diffusion terms are small compared with other terms. Elsewhere the 'diffusion' 
coefficient is generally significantly smaller than the kinematic viscosity or the 
thermal diffusivity and so its effects are negligible. When a timestep of 2 s was used 
some of the fine structure was lost, although the global flow pattern was almost 
identical. The 0.5 s timestep result was indistinguishable from the 1 s result. As seen 
in figure 3 the 50 x 50 and 90 x 90 meshes give equivalent results and the former was 
adopted for production runs. 

Unless otherwise noted, the results presented are from the 50x50 mesh in 
conjunction with a 1 s timestep. The code was run on the CRAY X/MP a t  the San 
Diego Supercomputer Center. CPU time for the two-dimensional 'ideal ' case was 
4900 s for 2500 s of simulation. (Longer timesteps, with a subsequent reduction in run 
time, could probably have been employed after 800 s with little loss of accuracy.) 

5. Simulation results 
The results presented are those for the reference case and four variations to the 

conditions assumed for this case. The adoption of the two-dimensional case as the 
reference was motivated primarily by the need to minimize computer usage, while a t  
the same time capturing the essential physics of the problem. It is probable that 
there will be some difference between the two-dimensional simulation and the three- 
dimensional experiments, particularly in the latter stages of the flow. Indeed, while 
the width and depth of Ivey's apparatus were 0.24 m, its span was 0.2 m, yielding a 
spanwise aspect ratio (span/height) of 0.83. In similar size apparatus, Koseff & 
Street (1984) found significant influence from endwalls for a lid-driven flow. In  the 
fully developed state the- measured flow in the vertical plane was weaker than that 
calculated by accurate two-dimensional simulations although the primary flow 
features were similar. In comparison, three-dimensional simulations of the flow by 
Freitas et al. (1985) show quantitative agreement with the experimental results. 
Mallinson & de Vahl Davis (1977) also showed that the predominant vertical-plane 
features of flows similar to those considered here remained qualitatively the same in 
two and three dimensions. The differences that arise concern only the weakening of 
the flow and the longer approach to steady state for the two-dimensional simulations 
(owing to the absence of viscous drag from the endwalls and the creation of 
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secondary flow structures in the spanwise planes). Thus, a two-dimensional 
simulation can be used to understand the essential physics. This is particularly so in 
our case where we are primarily concerned with the bchaviour in the very early 
stages of transient flow. 

5.1. Reference case 

The reference-case flow occurs in a square cavity of dimension 0.24m, with rigid, 
non-slip boundaries and containing water a t  rest and a t  temperature To = 20 "C. The 
upper and lower boundaries are perfectly insulated. At time t = 0, the right and left 
sidewalls are instantaneously heated and cooled to To + 5 "C and To - 5 "C, 
respectively, and thereafter maintained a t  these temperatures. This flow has the 
same spatial dimensions and the same nominal temperature difference between the 
vertical boundaries as used by Ivey (1984) The total time simulated was 2500 s. 

As expected, boundary layers form adjacent to the hot and cold walls. It takes 
approximately 10-20 s for these to reach a quasi-steady state, in good agreement 
with the scale time of 9.1 s. Figure 3 presents profiles of temperature, vertical 
velocity and vorticity immediately adjacent to the midpoint of the cold boundary at 
20 s for the 50 x 50 simulation. The scaled thicknesses of the thermal and viscous 
boundary layers are also indicated. These appear to be underestimates, and as a 
result the scaled velocity is larger than the simulated result. The vorticity profile 
accords with the description advanced in the previous section, although the scaling 
overestimates the values of the vorticity peaks. The temperature and velocity profiles 
for the 90 x 90 calculation are also shown on figure 3. The difference between the 
velocity peaks of the two simulations is less than 5%. The symbols indicate the 
location of mesh points. 

A series of pathline plots (beginning with figure 4a)  is used to illustrate the 
complex and rapidly changing features of the transient flow. The pathlines are the 
traces of 'particles ' initially positioned a t  every fourth mesh point m d  subsequently 
moved with the calculated velocities a t  the end of each 1 s timestep. The dots on the 
figures are the particle positions a t  the beginning of the 10 s timespan indicated. The 
traces are analogous to flow visualization using neutrally buoyant particles in a 
laboratory experiment and so allow comparison with Ivey's results. Note, however, 
that Ivey used 15 s photographic exposures. Temperature contours a t  the end of each 
of the time spans are also presented (beginning with figure 4b). The maximum and 
minimum contour values shown are 24.6 "C and 15.4 "C and the interval between 
contours is 0.4"C. The insets in each of the temperature contour plots show an 
enlarged view of the bottom of the cold wall. 

In figure 4(a )  the vertical-wall flow is clearly evident. The flow emerging a t  the top 
of the hot wall and the bottom of the cold wall (the emergent corners) appears 
generally to have two parts-a horizontal intrusion and a potential flow. The 
temperature contours in figure 4 ( b )  show the commencement of the horizontal 
intrusions. The warm (upper) intrusion is advancing slightly faster than the cool 
(lower) intrusion, owing mainly to the lower viscosity and high coefficient of thermal 
expansion of the warm water. The 6 mm thickness of these intrusions agrees well 
with the scale thickness of 4 mm. 

During the next 10 s, eddies at the top and bottom emergent corners become more 
pronounced, as shown in figures 4(c, d ) .  The beginnings of separation zones at 
x / h  = 0.87 on the upper boundary and x/h = 0.13 on the lower boundary are also 
discernible. Between these two flow features the intrusions themselves appear to be 
in transition. Rather than continuing to propagate as thin layers along the 
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FIGURE 3. Profiles of temperature (A), vertical velocity (0,  0) and vorticity (0) (for 50x 50) 
normal to the midpoint of the cold boundary at t = 20 8. Symbols show the location of mesh points. 
Profiles from the 90 x 90 simulations are shown in full line (with symbols superimposed on velocity 
profile), while profiles from the 50 x 50 simulation are shown in symbols only. The thicknesses of 
the thermal and viscous boundary layers based on the scaling analysis are indicated. Inset: 
schematic of the mesh spacing used in the 90x90 and 50x50 simulations. The meshes are 
symmetric about the centreline (x/h = 0.5) and identical in both the x- and y-directions. 

boundaries, they have rapidly widened to  - 20 mm, a value 6 times larger than the 
scale thickness suggested by (7). The reasons for such a transition are unclear. One 
possibility is simply that the corner eddies are sufficiently strong to entrain part of 
the intrusion, causing the emergent flow to diverge. The adverse pressure gradient 
produced by such a flow would also account for the formation of the separation 
zones. 

Ivey ( 1984) suggested that similar experimentally observed features could be 
internal hydraulic jumps. Defining the Froude number of the emergent flow as 
F = u/[g(Ap/p)  A ] ,  where u and Ap are a characteristic velocity and a density 
difference a t  the narrowest width, A ,  of the emergent flow, we estimate Froude 
numbers in the range 0.7-1.5, thus making this explanation plausible. For Froude 
numbers less than 1.7, hydraulic jumps are undular (Henderson 1966) and take the 
form of smooth standing waves with small energy losses. The present simulation is 
a full or direct simulation and while no account is taken of turbulent features of 
breaking phenomena associated with a usual hydraulic jump, the simulation should 
adequately represent an undular jump. 

An alternative explanation is that the intrusion is forced to flow under (over) 
undisplaced, relatively cool (warm) fluid on the top (bottom) of the cavity. This 
explanation agrees with the occurrence of temperature reversals in the intrusions (see 
for example, figure 4 4 .  A related experiment by Worster & Leitch (1985) showed a 
similar phenomenon. They accounted for the separation zone as an inertial affect 
associated with rebound of the emergent flow. 

Over the next 30 s the area of influence of the eddies continues to grow, and they 



132 S. G .  Schladow, J .  C. Patterson and R. L. Street 

0 1 .o 
x l h  

1 .o 

0 

1 .o 

Y 
3; 

0 1 .o 
x l h  

1 .o 

r 
h 

0 

1 .O 

Y 
3; 

0 1 .o 0 1 .o 
x l h  x l h  

FIGURE 4(u-f). For caption see page 134. 



Transient flow in a side-heated cavity at high Rayleigh number 133 

0 1 .o 

1 .a 

Y 
I; 

c I .O 
x lh  

\--I 

0 1 .o 
x l h  

1 .a 

2 
h 

0 

1 .O 

2 
h 

19.8_/ __-- 

x l h  

0 
x l h  

0 

FIQURE 4(g-Z). For caption see page 134. 



134 X. 12. Xchladow, J .  C .  Patterson and R .  L. Street 

0 1 .o 0 1 .o 
x l h  x l h  

FIGURE 4. Evolution of transient flow for two-dimensional cavity simulation. Pathlines are for the 
time intervals (a )  0-10 s ;  (c) 10-20 s ;  ( e )  40-50 s; (9) 80-90 S ;  (i) 12&130 S; (k) 160-170 S ;  (m) 
19W2000 s .  Temperature contours are for ( b )  10 s ;  ( d )  20 s; (f) 50 s ;  (h)  90 s ;  (j) 130 s; (I) 170 s;  
(n) 2OOo s. Left wall is at 15 "C and right wall is at 25 "C. Values shown are in "C. Isotherms are 
a t  0.4 "C intervals. Asterisks in (a ) ,  ( c ) ,  ( e ) ,  (g), (i), (k) and ( m )  show locations of temperature probes 
(see Figure la). Inset on temperature contour plots extends from the origin to x/h = 0.26 and 
y / h  = 0.2. 

appear to move away from the vertical walls as shown in figure 4 ( e ) .  This is not so 
much the result of advection of an existing vortex, but rather the result of the 
baroclinic generation of fresh vorticity by the advancing thermal front. The 
intrusions are now almost two-thirds of the way across the cavity with their 
thickness being relatively stable a t  about 20 mm (figure 4 8 .  Note the temperature 
reversals adjacent to the horizontal boundaries in each of the intrusions. The flow in 
the isothermal core is dominated by the eddies and by entrainment into the vertical 
boundary flows. This produces a net effect of a weak downflow on the side closest to 
the cool wall and upflow on the opposite side. 

By time t = 80 s, both intrusions have crossed the cavity as evidenced by figure 
4(g, h). The isotherms clearly show a 'piling up'  of the temperature-affected fluid at  
the ends of the intrusions, suggesting that seiches are possible. In  fact this process 
has already commenced for the case of the hot intrusion as shown by the sharp turn 
in the pathlines in the top left-hand corner. The same process commences in the 
opposite corner seconds later. Also noticeable are the distinct circulations in the 
separation zones. 

The flow reversal in the upper-left and lower-right corners caused by the internal 
waves is graphically illustrated in figure 4 ( i )  for time interval 120-130 s. The flow 
along the top and bottom boundaries has been greatly reduced and at times even 
reversed owing to the passage of the wave. In figure 4 (j) the slope of the isotherms in 
these regions is also clearly reversed. The separation zones have been squeezed by the 
flow and forced back towards their respective emergent corners, suggesting that the 
internal wave effect is indeed cavity wide. The very complicated temperature 
structure around the separation zones and the temperature inversions referred to 
previously ensure that the wave description will not be simple. The core is still 
essentially isothermal and so internal wave effects are confined to the intrusion zones 
only. Core velocities are still low and flow direction is predominantly as before. The 
eddies now appear to be centred on the opposite side of the cavity. They are 
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commencing to lose their identities as their vorticity diffuses and production is 
reduced with the weakening of the horizontal temperature gradients. The anomolous 
blobs of warmer and colder fluid in the lower and upper emergent corners are the 
result of slight overshoots and undershoots produced by the quadratic upstream 
differencing of the convected quantities (McGuirk, Taylor & Whitelaw 1982). These 
occur where sharp gradients exist sufficiently far from the areas of high grid packing 
at the walls. Tests with different mesh refinements (a finer mesh producing a smaller 
over/undershoot) confirm that with the 50 x 50 mesh the features have no significant 
influence on the dynamics of the flow. 

By time interval 160-170 s (figure 4 k ,  1 )  the internal waves are clearly moving in 
the opposite direction to the previous time interval. The intrusion velocities are 
however clearly lower than they were a t  earlier stages in the flow. 'As the strongly 
stratified regions start to occupy a larger part of the cavity there is definite 
detraining of fluid from the vertical boundary layer a t  points other than the 
emergent corners. This would appear to match the observations of Worster & Leitch 
(1985). 

At the time interval 1900-2000 s, the flow is nearing its steady-state condition. In 
figure 4(m) the pathlines show that the velocities in the core are almost completely 
horizontal, with maxima occurring near the top and bottom boundaries and zero 
velocity near midheight. In the upper half of the cavity the flow is exclusively to the 
left and in the lower half, to the right. These flows support the entrainment from the 
lower (upper) half of the hot (cold) wall and the detrainment from the upper (lower) 
half. The fact that the detraining flows are now carried by the entire cavity depth 
rather than by two thin intrusion layers accounts for the lower overall velocities 
evident in the figure. Clearly visible is the vertical flow reversal a t  the detraining 
portion of the vertical boundaries (Gill 1966). The temperature contours in figure 
4(n) show the entire cavity to be vertically stratified at  this time. The gradient is 
weakest a t  midheight ; however it continues to strengthen with time. 

A comparison between the flow fields generated by the 50x50 mesh and the 
90 x 90 mesh is afforded by the velocity-vector plots a t  t = 80 s shown in figure 
5(a, b). The vectors in each have been plotted a t  the same scale. The two fields are 
very similar, the most pronounced differences being the ability of the finer mesh to 
provide slightly sharper definition of the recirculation zones on the horizontal 
boundaries, and to resolve two very weak eddies adjacent to each of the intrusions. 
For the latter, the coarser grid produced a single, weak eddy adjacent to the 
intrusions. 

The description of the flow advanced on the basis of vorticity considerations can 
also be confirmed by viewing contours of vorticity. Figures 6 ( a ,  b) shows vorticity 
contours at the top of the hot wall a t  two times. The values of the vorticity contours 
range from 0.2 s-l (the innermost contour on both) to -2.6 s-' at 10 s and -3.8 s-l 
a t  20 s. Immediately adjacent to the vertical wall, negative vorticity diffuses away 
from the generation site a t  the wall. Sufficiently far from the wall, vertical advection 
dominates, hence the relatively broad region of high (> 0.2 s-l) positive vorticity. In 
the vertical direction the negative vorticity is seen to diminish only when the flow is 
within the top 5% of the wall, and to approach zero a t  the corner. Regeneration of 
negative vorticity occurs over an equally short distance along the top wall. These 
regions correspond to areas of high tangential pressure gradient. 

As suggested previously, the advected positive vorticity in figures 6(a, b)  tends to 
accumulate near the emergent corners. Figure 7 ( a ,  b)  shows only the positive 
vorticity at 20 and 50 s for the full cavity. Contour intervals are at 0.02 s-l. What is 
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FIGURE 5. Velocity vector plot at t = 80 s for (a) 50 x 50 simulation, and ( b )  90 x 90 simulation. 
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FIGURE 6. Vorticity contours in upper right-hand corner of two-dimensional cavity a t  (a) 10 s and 
( b )  2 0 s .  Positive vorticity contours are shown as bold lines. Values shown are in s-’. Contour 
interval is 0.4 s-’. 

now evident, with the lower vorticity contours, is the existence of the secondary 
region of positive vorticity generation associated with the head of the intrusion. 
Thus, what appeared in figure 4 ( e )  to be a single eddy just below the upper intrusion, 
has in fact two ‘vorticity centres’. 

The pathline photographs from Ivey (1984) have much in common with the flow 
described above. For example, structures that appear very similar to the flow 
separations and depth transitions above appear in the photographs at approximately 
the same locations. However, the core flow is radically different. The simulation 
shows core motions that are controlled by entrainment to the vertical boundary 
layers and the influence of the two positive vorticity regions generated by the 
advancing intrusions. The experiment by comparison shows a core that, from 
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FIGURE 7. Positive vorticity contours for two-dimensional cavity at (a) 20 s and ( 6 )  50 s. 
Values shown are in s-l. Maximum contour value is 0.2 s-l. Contour interval is 0.02 s-l. 
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approximately 8&130 s, is dominated by a single, central vortex of negative 
vorticity. The mere existence of negative vorticity in the core is difficult to reconcile 
with the description of vorticity generation presented above. We return to this point 
later. 

Data from thermistors at  three points in the warm intrusion led Ivey to conclude 
that oscillations in the transient flow existed, but that they did not extend across the 
full width as would a seiche. In the simulated flow seiches are present, as already 
demonstrated by the pathlines and the temperature contours. This difference 
between the numerical and the experimental results can be accounted for quite 
simply, however. The asterisks in the pathline plots show the locations of the 
thermistors (also see figure l a ) .  It is evident that the two on the right are very close 
to the separation zone for much of the time. Changes in point temperatures 
associated with the observed migration of this zone are far greater than those 
attributable to the seiche, and so the temperature response at opposite sides of the 
cavity will be very different and largely uncorrelated. Furthermore, as the left-hand 
thermistor is at  about the level of the temperature reversal noted earlier, oscillations 
at that point would appear quite weak. A point lower down in the intrusion would 
see a more pronounced variation in temperature. 

Figure 8 (a)  presents non-dimensionalized temperature traces from the simulation 
for the same points, overlaid by Ivey's experimental data. The dashed lines represent 
experimental data for the case where AT = 4.8 O C  and u = 7.1, while the dotted lines 
are for AT = 5.0 "C and u = 6.6. (Note that the Rayleigh number as we define it is 
a factor of two larger than that of Ivey.) These deviations from the simulation 
conditions should produce only a small change. However, the agreement between the 
numerical and the experimental results is poor. The temperature differences 
produced in the simulation are as much as a factor of two greater than those observed 
in the experiments and rise at much faster rate. The time a t  which a temperature rise 
is initiated is also slightly larger in the experiment. These points of difference will be 
considered further in the discussion of the results from variations to the reference 
case. 

The weak oscillation at point 3 noticeable in both the simulated and the 
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FIGURE 8. (a )  Traces of non-dimensionalized temperature from points 1, 2 and 3 (see figure 1) for 
initially homogeneous cavity (BT = 5.0 "C and u = 7.1). Traces from experiments are overlayed as 
dashed lines (AT = 4.8 O C  and I.T = 7.1), and dotted lines (AT = 5 O C  and u = 6.6). (b)  Traces on non- 
dimensionalized temperature from points 1, 2, 3 and 4 (see figure l a )  for initially stratified cavity. 
The trace for point 4 has been offset vertically by 0.1 for clarity. 

experimental result. This is the only evidence of a seiche that the instrumentation 
could provide. Its period is 60-70 s, which compares favourably with the 40 s 
suggested by the scaling. 

The clearest demonstration that a seiche is generated when the intrusion reaches 
the opposite side of the cavity is a plot of Nusselt number against time. The Nusselt 
number was evaluated at the hot and cold vertical boundaries and a t  the centreline 
between these two boundaries by vertically integrating the equations 
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FIGURE 9. (a) Nusselt number at the hot wall, the cold wall and the centreline aa a function of time 
for 50 x 50 simulation. (b) Comparison of the centreline Nusselt number for the 50 x 50 simulation, 
the 90 x 90 simulation and the 50 x 50 simulation with 0.5 "C vertical temperature difference. 

and 

where K is the thermal conductivity, C, is the specific heat a t  constant pressure, and 
the overbar indicates an average over the whole cavity. Figure 9 ( a )  shows the result. 
The Nusselt number a t  the centreline can clearly be seen to be oscillatory, a reflection 
of the strongly fluctuating velocity associated with a seiche. The oscillations were 
damped after about 600 s, two orders-of-magnitude sooner than suggested by the 
scaling. The fact that the scaling employed by Patterson & Imberger (1980) was a 
simple momentum/diffusion timescale based on the cavity height h accounts for this. 
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As the internal waves are confined to the region of the intrusions, a more appropriate 
lengthscale would be one that relates to the thickness of the intrusion. (This would 
also produce a better estimate for the internal wave period.) As noted above, the 
present scaling of the intrusion thickness is itself questionable. However, based on 
the observation that the intrusion thickness is approximately one-tenth the cavity 
dimension by the timc it has traversed the cavity (see figure 4 h , j ) ,  a better first 
estimate of the decay time of the internal wave would be (0.1 h)2/u - 570 s,  in good 
agreement with the simulated value. 

Attainment of steady state would coincide with all three Nusselt numbers 
collapsing to a single, constant value, a condition that the simulation is obviously 
approaching. The difference between the Nusselt numbers a t  the hot and cold walls 
is a result of the temperature dependence of the fluid properties. They cause the 
thermal boundary layer a t  the hot wall to be thinner than that at the cold wall. Thus 
the Nusselt-number difference will disappear only when the temperature in the core 
rises enough above 20 "C to compensate by increasing aT/ax a t  the cold wall relative 
to that a t  the hot wall. The Nusselt number across just the centre of the cavity for 
both the 50 x 50 and 90 x 90 simulations is shown in figure 9 ( b ) .  The difference can 
be seen to be very small for the 186 s simulated. 

5.2. Variations from the reference case 
5.2.1. Gradually heated sidewalls 

As a temperature difference cannot be generated instantaneously in a physical 
experiment, an attempt was made to simulate this condition numerically. In this 
case the temperature boundary condition on the hot and cold walls was ramped 
linearly from To a t  t = 0 to To* AT a t  t = 5 s. Five seconds was the time required for 
Ivey's experiment to produce a constant temperature difference across the cavity. 
The effect on the simulated flow field and temperature contours was negligible over 
the 200 s calculated. 

5.2.2. Non-insulated upper and lower boundaries 
Non-insulated upper and lower boundaries are likely to exist in physical 

experiments. In this case, the conditions were suggested by the uninsulated bottom 
boundary of Ivey's cavity. In fact a more extreme case was simulated, specifically 
both the upper and lower boundaries being maintained a t  the ambient temperature 
of 20 "C. The results for a 200 s simulation, however, showed that the effect on the 
transient flow was insignificant and pathline plots were virtually identical to those 
of the reference case. The heat flux in the intrusions is so strongly controlled by 
advection during the early stages of the flow that the conductive effects are 
negligible. Such a result was predicted by Gill (1966). 

5.2.3. Three-dimensional cavity 
A three-dimensional simulation was conducted while treating the centreplane in 

the spanwise direction as a symmetry plane. The endwall was assumed to be 
insulated. This use of the half-cavity greatly reduces CPU time and storage 
requirements compared with the full three-dimensional simulation. Test runs showed 
no difference between simulations for a half-cavity and a whole cavity. A 50 x 50 x 19 
mesh was used for the half-cavity simulation. The horizontal span of the half-cavity 
was 0.1 m, making the geometry identical to that of the experimental facility used 
by Ivey. The simulation was terminated at 800 s. 

Velocity-vector plots in particular planes are used to illustrate the resulting flow 
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FIGURE 10. Velocity vectors at 120 s on the vertical (z, y)-plane at  z/W = 0.5, for 
three-dimensional simulation (see figure 1 b ) .  
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FIGURE 11. Velocity vectors at 120 s on the vertical (z, y)-plane at  z/W = 0.045, for 

three-dimensional simulation. 

(see figure 1 b). Figure 10 is a plot on the centre (z, y)-plane (z/W = 0.5) a t  time 
t = 120 s ;  W is the full cavity span. It is clear that there is little difference betweeen 
this flow and the two-dimensional flow in figure 4(i) .  The corresponding temperature 
contours (not shown) also are in good agreement. Therefore, a t  this point of time in 
the solution, on the centreplane there was little apparent difference between the two- 
and three-dimensional simulated flows, and certainly nothing to account for the core 
vortex observed in the experiments. 

Away from the centreplane the flow is strongly influenced by three-dimensional 
effects. Figure 11 shows a velocity-vector plot in the vertical (2, y)-plane at  
z /  W = 0.045. The flow is clearly different from that at the centreplane, with reversing 
flows actually ocurring within both intrusion layers. However, the flow direction in 
the core is still largely controlled by entrainment into the vertical boundary layers 
and so still differs from the experimental observation. A better picture of the nature 
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three-dimensional simulation. 

of these reverse flows is gained by viewing velocity vectors in the horizontal (x, 2)- 

plane. In  figure 12 the plane a t  y / h  = 0.9 clearly shows the endwall exerting a very 
large effect on the flow field. At this level the flow shown is within the temperature- 
stratified intrusion layer. Interestingly some of the largest velocities are away from 
the centreplane. 

Views of the velocity vectors in the vertical (y, 2)-plane (parallel to the hot and 
cold walls) show other surprising flow patterns. In figure 13 a section a t  x/h = 0.68 
reveals vortices in the region below the temperature stratification. These structures 
appear to exist in the upper half of the cavity on the side closer to the hot wall and 
in the lower half of the cavity on the side closer to the cold wall. 

Temperature traces a t  points on the centreplane coinciding with Ivey’s 
measurement points produce very similar results to the two-dimensional result 
shown in figure 8 ( a ) .  The differences between the simulated traces and the 
experimental traces described previously still remain. Nusselt numbers were 
calculated a t  the walls and across the centreline. Rather than integrating across the 
full cavity depth (in the 2-direction) they were calculated over strips defined by the 
mesh points in the z-direction. Values for Nusselt number a t  the hot and cold walls 
a t  all values of z/W were virtually unchanged from the two-dimensional result. 
Nusselt numbers across the centreline, however, did vary with z /  W .  These differences 
were in both the amplitude of the oscillations and in their phase. However, they did 
not manifest themselves near the symmetry plane until after almost 300 s, well after 
the time of influence of the core eddy. Thus three-dimensional effects appear to play 
no role in the formation of the core eddy. (Details of this three-dimensional flow will 
be presented in a separate contribution.) 

5.2.4. Initially stratijted ambient 
As a final variation from the ideal case, a stable stratification with a linear, vertical 

temperature distribution was imposed on the two-dimensional cavity as an initial 
condition. Four temperature gradients were simulated. These were 4.17, 2.08, 1.25 
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FIGURE 13. Velocity vectors at 120 s on the vertical (y, %)-plane at x/h = 0.68, for 
three-dimensional simulation. 

and 0.42 "C m-l, corresponding to vertical temperature differences from top to 
bottom of 1.0, 0.5, 0.3 and 0.1 "C respectively. Qualitatively the results for all four 
cases were similar, and the quantitative differences were small. Accordingly, only the 
results for the 0.5 "C difference are presented. (G. N. Ivey (personal communication, 
1988) considers 0.5"C an upper bound of possible difference.) Figure 14 shows a 
sequence of 10 s pathlines for four time intervals. From the time the intrusions start 
to propagate across the cavity the distinction in the two flows is apparent. I n  figure 
14(a) (4&50 s) i t  is clear that the production of the core eddies, previously located 
adjacent to the intrusions in figure 4(e ) ,  is being suppressed. In  figure 14(c),  20 s 
later, the flow direction in the upper-left and lower-right areas of the core has been 
turned by almost 90" from the previous figure, in a further departure from the 
unstratified case. But, it is only in figure 14(e) that the radical difference in the flow 
pattern becomes apparent. For the time interval 80-90 s the core is seen to be 
dominated by a large, elongated, single vortex which is tending to move fluid up the 
cold side and down the warm side. Thus, the state that could not be realized in the 
reference case, i.e. the core dominated by negative vorticity, does in fact occur when 
the cavity is stratified. The agreement between this figure and Ivey's (1984) figures 
2 ( b )  and (9) is remarkable. The flow in the top intrusion has also commenced 
reversing itself, again suggesting the presence of internal waves within the intrusions. 
Twenty seconds later, in figure 14(g), the vortex can be seen ho be even more 
pronounced. This agrees with Ivey's figure 2 ( c ) ,  where a distinct lengthening of the 
streaks is apparent. As time continues the core vortex slows and reverses direction, 
after which time the approach toward steady state is not unlike that taken by the 
unstratified cavity. 

The reason for the generation of this flow pattern becomes clear when the 
temperature contours are examined. At t = 40 s (figure 14b) the 20 "C isotherm 
across the centre of the core is essentially horizontal. By t = 60 s (figure 14d) it has 
started to tilt, partially in response to the entraining flow into the vertical 
boundary layers and partially in response to the influence of the intrusions. This 
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FIQURE 14. Pathlines and temperature contours for two-dimensional cavity simulation with 0.5 "C 
vertical temperature difference. Pathlines are for the time intervals (a) 40-50 s ;  (c) 60-70 8 ;  ( e )  
80-90 s; (9) lOCL110 s .  Temperature contours are for (b )  40 s ;  (d )  60 s ;  (f) 80 s ;  (h )  100 s .  Left wall 
is at 15 "C and right wall is at 25 "C. Values shown are in "C. Isotherms are at 0.4 O C  intervals. 

tilting is continued a t  t = 80 s but by t = 100 s (figure 14 h)  the isotherms have 
commenced to rebound baroclinically, forming a distinct core seiche. 

Figure 8 (b )  shows the simulated temperature traces for the three measurement 
points, as well as a temperature trace for a fourth point located at midheight in the 
cavity (see figure la). From this latter point it can be clearly seen that the seiche 
period of the core is independent of that in the intrusion. The former has a period of 
approximately 150 s, over double the period of the intrusion seiche. These values can 
be accounted for by the respective density gradients in each. The intrusion seiche 
in the stratified cavity is weaker than it was in the reference case. This is clearly 
shown by the reduced amplitude of centreline Nusselt-number oscillations in figure 
9 ( b ) .  

The experimental temperature traces have also been overlayed on figure 8 (b ) .  The 
agreement between experiment and simulation is clearly better than for the reference 
case in figure 8(a) .  It is not surprising, however, that there is not better agreement. 
Nothing is known of the actual stratification in the experiments, and so the case 
simulated is just one of an infinite number of possible stratifications. What is 
encouraging, however, is that the imposition of the stable gradient significantly 
changes the simulated response a t  the measurement points, both in respect to the 
rate of temperature increase and the overall temperatures attained during the 
measurement period. 

A point worth noting is that the use of a stable, vertical temperature gradient has 
previously been advanced as a means of reducing convection associated with 
oscillatory response in side-heated cavities (Ostrach & Raghavan 1979). This 
behaviour has been observed in the growing of crystals from liquid metals (see, for 
example, Hurle, Jakeman & Johnson 1974). The present result clearly demonstrates 
a counterexample, i.e. there is a parameter range within which convection in regions 
of a cavity may be dramatically increased when such a gradient is present. 
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6. Conclusions 
6.1. Characteristics of the jlow 

The basic flow examined in this paper was that produced by the side heating and 
cooling of a square, water-filled cavity a t  a Rayleigh number of 2 x lo9. At time 
O(10 a), boundary layers form along the vertical walls. High vorticity of both signs is 
produced there; however, the negative vorticity is confined to a very thin region 
along the boundaries. The fluid with positive vorticity tends to accumulate adjacent 
to the emergent corners, where it can exert a direct influence on the intrusions that 
form and on the core of the cavity. Temperature stratified intrusions of relatively 
warm (cool) fluid propagate horizontally across the top (bottom) of the cavity after 
time 0(102 s), producing as they advance, eddies of positive vorticity in the core of 
the cavity. Seiches form in the intrusions, as a result of the blocking effect of the 
opposite sidewall, and the fluctuating velocities these produce dominate heat 
transfer rates away from the boundaries. The seiches are damped within a few 
periods. Steady state occurs after time O( lo3 s). The approach to it takes the form of 
the filling of the cavity with a vertical temperature gradient. 

For the spanwise aspect ratio considered (0.83) the flow on the symmetry plane 
is only slightly influenced by three-dimensional effects over the time considered in 
detail in this paper, confirming the relevance of the two-dimensional simulations. 
However, away from the symmetry plane, the flow is distinctly three-dimensional 
and characterized by recirculation zones and vortices. 

The superposition of a stable vertical temperature stratification has a pronounced 
influence on the flow. For vertical gradients as low as 6 the strength of the mean 
horizontal gradient, baroclinic production of vorticity results in the formation of a 
distinct core eddy, rotating in a sense that is up the cold side and down the warm side 
of the cavity. Though this flow is visually very dramatic, it has only a small influence 
on heat transfer rates across the centreline of the cavity which are by and large 
controlled by the velocity in the intrusions. In situations where mass transfer in the 
core is a consideration, this process may assume more importance. The steady-state 
condition is unaffected by the initial stratification. 

6.2. Validity of the scaling laws 

The general description and the scaling laws advanced by Patterson & Imberger 
(1980), for flows in regime V, appear to be well borne out by the results presented. 
The most contentious issue, the oscillatory approach to steady state, clearly holds. 
However, there are aspects that do not conform to the scaling. Most noticeable of 
these is the large transition in the intrusion width. Several mechanisms could account 
for it ; however further experimental measurements will be needed to reach a definite 
conclusion. 

6.3 Comparison with experiment 

The single laboratory experiment that relates to this work agrees with many of the 
numerical results described above. Though the temperature measurements did not 
suggest the existence of a seiche within the intrusion, the numerical results have 
(with the advantage of hindsight) shown that this is directly attributable to an 
unfortunate choice of sampling positions. 

The main point over which substantial disagreement exists is the experimental 
observation of a single core eddy with negative vorticity. The theoretical 
considerations presented suggest no mechanism for the generation of such vorticity 
in the core of an initially homogenous cavity, a fact borne out by the numerical 
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simulations. Only when a weak vertical stratification is present do both theory and 
numerics agree with the observation. The fact that the imposition of such an initial 
condition also provides for far better agreement with temperature measurements 
lends credence to the hypothesis. Insofar as the degree of stratification required could 
readily be imparted by the absence of bottom insulation, overhead lighting or a 
stratification in the laboratory itself, this result highlights the difficulty inherent in 
conducting experiments of transient flows. 
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